AFRL-SR-BL-TR-98- '
REPORT DOCUMENTATION PAG . g)\ TR-98 |
: g:?n?frreﬂ"”.": DUrge™ 07 TN g [Iiersen I AT0rmalite E'Sfi"ﬁﬁf.?: cTAser G TS . N /
T R O e05a32, ang - wma PR
© 1. AGENCY USE ONLY (Leave biank; 2. REPORT DATE : 3. REPORT TYPE AND DATES COVEREC
Final 01 Apr 95 To 31 Dec 97
. &. TITLE AND SUBTITLE ’ 5. FUNDING NUMBERS
IN SITU DOSE-RESPONSE RELATIONSHIPS FOR A MAMMALIAN ; F49620-95-1-0249
; MULTIPARAMETER MODEL FOR ASSESSING PETROCHEMICAL-INDUCED
ECOTOXICITY 61102F
1 6. AUTHOR(S)

i Dr Robert L. Lochmiller

;
| 2312/88
%

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

i
1
i
i

8. PERFORMING ORGANIZZLTION
. . REPORT NUMBER
Environmental Toxicology Program

Dept of Zoology
Oklahoma State University
Stillwater OK 74078

i'S. SFONSORING  MONITORING AGENCY NAME(S) AND ADDRESS(ES) £ 16. SPORSORING MONITORING

AFOSR/NL AGENCY REPORT NUMBEER

110 Duncan Ave Room Bl15
Bolling AFB DC 20332-8050

Dr Walter Kozumbo

1%. SUPPLEMEINTARY NOTES

©12&. DISTRIBUTION - AVAILABILITY STATEMENT

Approved for publio release; 722 040
distributionunltimited.

1. ABSTRACT (Maximum 200 words)

Assessing ecological risk in terrestrial environments is an extraordinarily difficult,
and yet to be fully-defined, task. Induced toxic effects in the ecosystem are often
the result of synergistic and antagonistic interactions among a myriad of physical
factors and complex mixtures of pollutants that are difficult to reproduce in the
laboratory. Additionally, amny pollutants are organ/system—-specific in their mode

of toxicity (affecting metabolism, genetic integrity, immune system function, repro=-;
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physiological systems in a host organism could have important ecological consequences.
Employing a single biomarker approach to risk assessment under these circumstances ;
is largely a futile exercise. We developed an in situ multiparameter approach, i
incorporating a suite of acute and chronic bioclogical indicators of exposure to '
lethal (population survival rates), mutagenic, immunotoxic, teratogenic, or sublethal
(histopathologic, detoxication, reproductive effects) compounds, using resident smalL
mammals to provide the robustness and sensitivity desired in an ecological risk
assessment model. To characterize dose-response relationships in situ, multlparameter
response profiles were quantified for cotton rats (Sigmodon hispidus) returned to the
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LABORATORY. Response profiles were related to actual concentrations of contaminants
in the soil (or fractions of soil) on replicated (N=12) petrochemical-contaminated

and reference (N=12) locations. Sites selected for study represented a continuum
(none to severe) of contaminant levels and degrees of ecotoxicity (as determined from
small mammal community dynamics). We hypothesize that our mammalian multiparameter
model would behave in situ in a classic dose-response fashion, mirroring the level of
ecotoxicity as determined by soil analyses and ecosystem-level responses. Analysis of
type and concentration of soil contaminats at each site permited us to examien if
similar response profiles can be attributed to the presence of specific contaminants
that were common to all sites. Of the biomarkers wer empolyed in this study,
assessing cell-mediated immunity in a lymphoproliferation assay, enumerating platelets
in whole blood, assessing metabolic and phagocytic function of macrophages, and
measuring myelotoxicity appeared to be the most sensitive indicators of exposure to
toxicants in the soil for cotton rats, especially those from land treatment waste
disposal sites. Genotoxic and pathologic indicators were not sensitive to exposure
levels at these petrochemical waste sites. Tissue contaminant burdens in cotton

rats were useful measures of actual metal exposure and hepatic isoenzyme activities
for detoxification enzymes proved useful in assessing actual exposure to organic
contaminants.
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EXECUTIVE SUMMARY

Assessing ecological risk in terrestrial environments is an extraordinarily difficult,
and yet to be fully-defined, task. Induced toxic effects in the ecosystem are often the
result of synergistic and antagonistic interactions among a myriad of physical factors
and complex mixtures of poliutants that are difficult to reproduce in the laboratory.
Additionally, many pollutants are organ/system-specific in their mode of toxicity
(affecting metabolism, genetic integrity, immune system function, reproduction, or some
other life processes) and alterations in any one of the above physiological systems in a
host organism could have important ecological consequences. Employing a single
biomarker approach to risk assessment under these circumstances is largely a futile
exercise. We developed an in situ multiparameter approach, incorporating a suite of
acute and chronic biological indicators of exposure to lethal (population survival rates),
mutagenic, immunotoxic, teratogenic, or sublethal (histopathologic, detoxication,
reproductive effects) compounds, using resident small mammals to provide the
robustness and sensitivity desired in an ecological risk assessment model. To
characterize dose-response relationships in situ, multiparameter response profiles were
quantified for cotton rats (Sigmodon hispidus) returned to the laboratory. Response
profiles were related to actual concentrations of contaminants in the soil (or fractions of
soil) on replicated (N = 12) petrochemical—contaminated and reference (N = 12)
locations. Sites selected for study represented a continuum (none to severe) of
contaminant levels and degrees of ecotoxicity (as determined from small mammal
community dynamics). We hypothesize that our mammalian multiparameter model
would behave in situ in a classic dose-response fashion, mirroring the level of
ecotoxicity as determined by soil analyses and ecosystem-level responses. Analysis of
type and concentration of soil contaminants at each site permited us to examine if
similar response profiles can be attributed to the presence of specific contaminants that
were common to all sites. Of the biomarkers we employed in this study, assessing cell-
mediated immunity in a lymphoproliferation assay, enumerating platelets in whole
blood, assessing metabolic and phagocytic function of macrophages, and measuring
myelotoxicity appeared to be the most sensitive indicators of exposure to toxicants in
the soil for cotton rats, especially those from land treatment waste disposal sites.
Genotoxic and pathologic indicators were not sensitive to exposure levels at these
petrochemical waste sites. Tissue contaminant burdens in cotton rats were useful
measures of actual metal exposure and hepatic isoenzyme activities for detoxification
enzymes proved useful in assessing actual exposure to organic contaminants.



REPORT PERIOD
1 April 1995 to 31 December 1997

PRINCIPAL INVESTIGATOR
Dr. Robert L. Lochmiller

OTHER PROJECT PERSONNEL SUPPORTED

Listed below is a list of personnel that have been associated with the USAF-
supported project during the life of the project; some have been supported directly
while others have been associated indirectly with project as collaborators or volunteers:

Dr. Robert L. Lochmiller (PI: Professor, OSU)

Dr. Charles W. Qualls (Co-Pl: Professor, OSU)

Dr. Karen McBee (Co-Pl: Associate Professor, OSU)

Dr. Nick Basta (Co-Pl: Assistant Professor, 0SsuU)

Dr. Jim W. Lish (Research Assistant, 18% effort, OSU)

Dr. William Warde (Statistical consultant, Professor, OSU)
Soochung Kim (Ph.D. candidate: 1 April 1995 - present)

Barbara Bowers (M.S. student: presently writing thesis)

Dan Rafferty (M.S. candidate: 1 August 1995 - present)

Danny Allen (Ph.D. candidate: 1 May 1996 - present)

Jackie Schroder (M.S. candidate: soil analysis, 1 July - present)

Lee Jones (Technician 100% effort: 1 April 1995 - present)

Brian Faulkner (M.S. student: assisted with census, summer 1995)
Eric Stair (M.S. student: assisted with detoxication enzyme analysis)
Joe Roder (M.S. student: assisted with detoxication enzyme analysis)
Mozhgan Savabieasfahani (Ph.D. candidate, 1 April 1995 - present).
Russell Pfau (Ph.D. candidate, )

Joanna Whittier (M.S. candidate, volunteer in genetics lab)

Nikki Manz (B.S. undergraduate assistant)

Demetrius Mason (B.S. undergraduate assistant)

Sundeep Chandi (recent Ph.D. graduate: manuscript preparation)
Sabu Kuruvilla (Ph.D. candidate: assisted with necropsies and histopathology)
Lori Gallimore, undergraduate hourly labor.

Patrick Shinaberry, undergraduate hourly labor

RESEARCH OBJECTIVES

Our overall proposed project objective was to characterize and quantify in situ
dose-response relationships for a multiparameter mammalian model using resident
small mammals (cotton rats) inhabiting petrochemical-contaminated ecosystems. To
characterize dose-response relationships in situ, multiparameter response profiles were
statistically compared to actual concentrations of contaminants in the soil at a large




number (N = 12) of petrochemical—contaminated locations and reference sites (N = 12).
We hypothesize that our mammalian multiparameter model would be sensitive in a
classic dose-response fashion to the level of ecotoxicity as determined by soil analyses
and ecosystem-level responses (small mammal community dynamics). Analysis of type
and concentration of soil contaminants at each site would permit us to examine if
similar response profiles can be attributed to the presence of specific contaminants that
was common to all sites. Specifically, we performed the following tasks:

1. To select 12 distinct study sites that have a history of petrochemical contamination
and possess a viable population of cotton rats. Each contaminated site was matched
with an ecologically similar reference site (total of 12 reference populations) for relative
comparisons of response profiles. Contaminated sites were comprised of areas with
suspected low, moderate, and high levels of contamination, as judged from preliminary
site remedial investigations by the EPA and Oklahoma Health Department.

2. To establish small mammal trapping grids (1 ha each) on each contaminated site
and their matched reference for seasonal (winter and summer) monitoring of community
structure and population demographics. Four matched areas were sampled per year
over the 3-year study.

3. To conduct soil and volatile organic contaminant characterizations of each site
using GC-MS analysis. Soil samples were collected to coincide with small mammal

trapping sessions.

4. To quantify multiparameter response profiles (pathology, genotoxicity,
immunotoxicity, metabolic toxicity) of cotton rats from petrochemical-contaminated sites
(N = 12) compared to ecologically-matched reference sites (N = 12).

5 To characterize in situ dose-response relationships of the multiparameter model as
a function of degree of toxicity using multivariate statistical analysis (multiple
regression analysis and discriminant function analysis). The degree of toxicity was
assessed subjectively from the nature and level of soil contaminants detected and the
severity of ecosystem-level effects (community structure, population demographics)
observed in the field.



RESEARCH APPROACH

Study Areas

The 12 sites of contamination selected for study consisted of disturbed terrestrial
ecosystems (early seral stage plant species) that support viable populations of resident
cotton rats. Each contaminated site was matched with an adjacent ecologically-similar
reference site. Matched reference sites permited us considerable experimental control
over non-pollutant environmental variables (climate, nutrition, etc.), which can
frequently confound interpretation of biomarker response profiles. Thus,
multiparameter response profiles for cotton rats from contaminated sites were
interpreted relative to their ecologically matched reference sites. The petrochemical-
contaminated sites that we choose for intensive monitoring were selected from known
Superfund Waste Sites and several abandoned oil refinery sites distributed throughout
Oklahoma. Specific study sites were at least 1 ha in size to accommodate a sufficiently
large population of cotton rats for censusing and seasonal sampling. Sites were also
selected to represent varying degrees of toxicity (from low to high), based on
preliminary soil and ground water contaminant analyses available from the EPA and
Oklahoma Department of Health.

During year 1 of the study (summer 1995 and winter 1996) we two toxic sites
located on an abandonded oil refinery in Cyril Oklahoma and consisted of a former
refinery waste landtreatment (LT) facility (Cyril LT) and pond burms (PM) surrounding a
former sludge pit (SP) for disposal wastes (Cyril PB SP). Two abandoned refinery
sludge pits located in Cleveland and Cushing, OK refered to as Cleveland (SP) and
Cushing (SP) were monitored during the same time period. All four toxic sites were
matched with a reference area.

In year 2 (summer 1996 winter 1997) we evaluated two toxic sites in Oklahoma
City, OK: a sludge pit on an abandoned re-refining complex formerly known as Double
Eagle Oil Refinery (refered to as DBL Eagle SP); a former landfill site on Tinker Air
Force Base, Oklahoma City (Tinker LF) that was scheduled for cleanup after our study,
and had been used extensively in the 1950’s and 1960’s for the disposal of municipal
waste, solvents and other aircraft maintenance waste; two contaminated sites were
located 25 miles south of Tulsa OK where wastes from refineries were disposed by
landtreatment (an area where only wastes had been landtreated, Tulsa SECTE LT, an
area where a waste pond had been filled and capped with contaminated landtreated
soil, Tulas Cap SP/LT.

In Year 3 (summer 1997 and winter 1998) three contaminated sites were located
on abandoned oil refinery, Duncan,OK and consisted of a former landtreatment facility
(DuncanLF LT), an asphalt pit for acid waste sludes (DuncanTP AP), and refinery
waste stream and waste sludge settling pond (DuncanPB SP). The Refinery began
operation in the 1920’s and shut down in the early1980’s. The fourth site was located
in Ponca City, OK on an active oil refining complex where tank bottom wastes were
landtreated (Conoco LT/LF).

The toxicity of each study site for quantifying dose-response relationships were
described by measuring ecologically relevant endpoints and careful characterization of




the type and level of contaminants in specific fractions (supercritical fluid extracts, total,
and bound) of soil samples collected from each study site and their matched reference
areas. Soil samples were obtained from randomly selected locations within the
boundaries of population census grids. Ecologically relevant endpoints to be measured
consisted of population monitoring to quantify seasonal changes in density, survival,
and recruitment, as well as, describe small mammal community structural attributes.
Animals (ca. 12) from each contaminated and matched reference site were collected
seasonally (summer and winter) and returned to the laboratory to fully characterize
multiparameter response profiles. Response profiles were compared to the major
chemical fractions in soil described above.

Data Collection

Each study population was censused and animals collected for detailed
physiological assessments in both summer and winter seasons. For each seasonal
assessment we collected 6 male and 6 female adult cotton rats from each population
and returned them to the laboratory. Animals were processed within 48 hours of their
capture from the field to minimize the chance of animals detoxifying prior to measuring
selected endpoints. Multiparameter response profiles measured on each collected
animal included: gross pathology, histopathology of major organs and glands,
detoxification enyme activities in liver, genotoxicity assessments, myelotoxicity
assessment, and immunotoxicity assessments.

Data Analysis

Population density and survival rates were measure using program CAPTURE
and Mark for cotton rats. Communities for each host population were described by
measures of diversity, mean species richness, and similarity. Diversities were
calculated by using the complement of Simpson’s index. Comparisons of mean species
richness and species diversity among treatments are in progress and are not available
for the final technical report.

Differences between contaminated sites and reference sites for the suite of
pathological and physiological endpoints were tested using ANOVA with season and
location as main factor effects, with interaction terms. Statistical significance for all
hypothesis tests was set a priori at P < 0.05.




RESEARCH OVERVIEW

Study Sites and Soil Contamination

Analysis of variance found metal concentrations in soil was elevated on the
petrochemical sites as compared to the reference sites for several metals including: Cd (P
=0.016), Cr (P = 0.003), Cu (P =0.002), Ni (P = 0.005), Pb (P = 0.0002), Sr (P =0.006.), Ti
(P = 0.025), V (P = 0.018), and Zn (P = 0.0001). The mean total soil content for all the
metals except Ti on the reference sites were similar to values reported for uncontaminated
sites (Table 2). Duncan's multiple range test indicated that the number of sites with
elevated levels varied between metals. The number of sites on which the metal level was
elevated (in parenthesis) as compared to the mean of all the reference sites was Ba (3), Cd
(2), Co (3), Cr (9), Cu (8), Ni (7), Pb (9), Sr (6), Ti (5), V (5), and Zn (12) (Tables 3-4). The
predominant elevated metals in soils on the petrochemical sites were Cr, Cu, Ni, Pb, Sr,
and Zn. Elevated levels of Cr in soil ranged from 2-fold to more than 100-fold greater than
the overall mean of the reference sites. Elevated levels of Cu in soil were 2- to 85-fold
greater than the overall mean of the reference sites. Elevated levels of Ni in soil were 1.5-
to 3-fold greater than the overall mean of the reference sites. Elevated levels of Pb in soil
were 5- to 140-fold greater than the overall mean of the reference sites. Elevated levels of
Sr in soil were 2- to 20-fold greater than the overall mean of the reference sites. Elevated
levels of Zn in soil were 2- to 26-fold greater than the overall mean of the reference sites.
Although the sites were classified as landfarms, pond burms, and tar pits; metal
contamination was randomly distributed among these three classifications.

Both the total fluoride in soil (P = 0.001) and HCI extractable form of fluoride (P =
0.002) were elevated on the petrochemical sites as compared to the reference sites. The
total content of fluoride in the soil of reference sites was similar to levels from
uncontaminated sites which ranges from 10 to 400 mg kg" depending on soil texture (Table
2). Total fluoride was elevated on seven of the sites and the HCI extractable form of
fluoride was elevated on nine of the petrochemical sites (Table 4). The HCl extractable
form of fluoride was 4- to 25-fold greater on the elevated sites as compared to the overall
mean of the reference sites. Total fluoride was 10-to 60-fold greater on the elevated sites
as compared to the overall mean of the reference site. It appears that fluoride in soil is
more prevalent on landfarms than on the other types of petrochemical sites.

Organic contaminants measured at petroleum contaminated sites and matched
reference sites included total petroleum hydrocarbons and other semivolatiles
(including PAHSs). Elevated levels of organic contaminants were found above GC-MS
detection limits (Table 7) at all study sites (Tables 8,9,10). Total petroleum
hydrocarbon (TPH) levels were low (<1000 mg kg") and total other semivolatile levels
were low (< 500 ug kg™) at the eight sites collected in years 1995-1997 (Tables 8,9).
However, soils collected from sites in the third year showed much higher levels of
contamination of TPH and semivolatile organics (Table 10).

Body Tissue Contaminant Loads ‘
Brain tissue was analyzed for organic contaminants. Only small amounts of




acenapthene and acenaphthylene were found in brain tissue but both control and
contaminated sites had similar levels of these compounds.

The overall mean content of Pb in bone was elevated (P = 0.003) for cotton rats
collected from the petrochemical sites as compared to the reference sites. There was a
significant interaction of treatment and season for Pb content (P =0 .0175) in cotton rat
bone. Analysis using the SLICE option of the LSMEANS statement showed that that
Pb levels in bone of 21.5 mg kg™ were higher in cotton rats collected from the
petrochemical sites in winter as compared to Pb content of 10.0 mg kg'1 in bone of
animals collected during the summer (P = 0.0003). Duncan's multiple range test
indicated that the number of sites with elevated levels of metal in cotton rats varied
between metals. The number of sites on which the metal level was elevated (in
parenthesis) as compared to the mean of all the reference sites was Ba (1), Cr (6), Pb
(8), Sr (4), Ti (0), and Zn (1) (Table 5). Of the metals examined; Cr, Pb, and Sr were
the most prevalent in bone tissue of cotton rats collected from the petrochemical sites.
Cr content of bone were slightly elevated on some sites and were approximately 2-fold
greater than the overall mean of bone Cr in cotton rats collected from the reference
sites. The elevated concentrations of Pb in bone were approximately 2- to 42-fold
greater than the overall mean of cotton rats collected from the reference sites. The
elevated concentrations of Sr in bone were only slightly elevated and were
approximately 1.5-fold greater than the overall mean of cotton rats collected from the
reference sites. The overall mean content of fluoride in bone was elevated (P = 0.004)
for cotton rats collected from the petrochemical sites as compared to the reference
sites. There was a significant interaction of treatment and season for fluoride content (P
= 0 .0377) in cotton rat bone. Analysis using the SLICE option of the LSMEANS
statement showed that that fluoride levels of 1926 mg kg™ in bone were higher in cotton
rats collected from the petrochemical sites in winter as compared to fluoride content of
788 mg kg™ in bone of animals collected during the summer (P = 0.0001 ). Fluoride
concentrations in bone of cotton rats collected from the reference sites were similar to
levels reported in other small mammal studies on uncontaminated sites. Fluoride
content of bone was also elevated on seven of the petrochemical sites as compared to
the overall mean of the reference sites (Table 5). Elevated fluoride concentrations in
bone were approximately 5- to 23-fold greater than the overall mean of cotton rats
collected from the reference sites.

Although elevated levels of metal were found in both soils and cotton rats from
the petrochemical sites, there was not a strong relationship between metal content of
bone and soil metal concentrations. (Table 6). However, there was a strong
relationship between bone fluoride and HCI extractable fluoride and total forms of
fluoride in soil. The soil Pb in our study covered a small range. Perhaps relationships
between soil concentrations of Pb and bone Pb may be difficult to determine when
relatively small ranges of soil contamination are examined.

Pathology
Gross examinations have proven extremely useful for determination of

pathologic, toxicologic, preneoplastic and carcinogenic alterations in cotton rats.
Necropsies included visual evaluation of the entire carcass, including teeth, and




weights of liver, kidney, adrenal, and gonads; and liver volume. Special attention was
given teeth; upper and lower incisors were scored for color and enamel integrity. Liver,
kidney, adrenal, pancreas, representative intestinal areas, heart, lung, and brain were
selectively removed and placed in neutral buffered formalin and processed for
histological examination; blood was collected for hematological analysis and serum
chemistries.

We observed significant (P < 0.05) differences in relative mass of the liver on
contaminated landfarm sites compared to their matched reference sites. Increases in
relative liver mass have been reported in laboratory mice exposed to petrochemical-
contaminated soil (Silkworth et al. 1984). Rattner et al. (1993) observed elevated
relative liver mass in cotton rats from the MOTCO Inc. waste site in Texas, which was
consistent with exposure to petroleum hydrocarbons. However, at an arsenic-
contaminated site, Rattner et al. (1993) observed reductions in the relative mass of the
liver in cotton rats. We observed that relative live mass was elevated on two landfarm
sites yet reduced on another, suggesting that different contaminants were responsible
for these disparate results.

Kidney mass was lower in cotton rats from contaminated landfarm sites in
summer, whereas relative kidney mass was both reduced (two sites) and increased
(one site). This inconsistency is also suggestive of differing forms of contamination and
toxicity across land treatment units. The trends in relative liver and kidney masses
were similar in our study, suggesting that contaminants in the soil effected these two
organ systems in a similar fashion.

The prevalence of dental fluorosis in this study was somewhat less in that
approximately 50% of the cotton rats captured on the seven petrochemical sites with
elevated levels of soil and bone fluoride displayed dental lesions (severity score > 3).
The majority (> 99%) of the cotton rats collected from the reference sites in this study
did not have dental lesions. Severity of dental lesions varied from site to site and
ranged from a score of one (slight striation in lower incisor) to a score of five (white
chalky lower and upper incisors). Overall approximately 80% of the cotton rats
_ collected from the seven petrochemical sites with elevated levels of soil and bone
fluoride had some form of dental lesions (severity score of 1 to 5). The prevalence of
dental fluorosis was approximately 50% higher in winter than in summer animals.
Dental lesions were more prevalent on sites A, C, D, and Lthanon the other sites.
However, more than 50% of the cotton rats collected from sites B, E, and H had
lesions. Regression analysis revealed a strong relationship (P = 0.0001) between
incisor score and fluoride content in bone of cotton rats. However, a more detailed
analysis using Fisher's exact test indicated that the severity of dental fluorosis could
not always be accurately predicted by the concentration of fluoride in bone. By
classifying total content of fluoride in bone as low (<1000 mg kg"), medium (= 1000 but
< 3000 mg kg™), or high (= 3000 mg kg™) and ranking dental lesions in cotton rats as
low (< 3) or high (= 3), it was possible to determine whether fluoride content in bone
could predict the severity of dental fluorosis in cotton rats. The analysis revealed that
only 5% of the cotton rats had a high severity score when bone fluoride concentrations
are less than 1000 mg kg™. Thus, low levels of bone fluoride can accurately predict the
severity of dental fluorosis. Approximately 52% of the animals collected had a high
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severity score when bone fluoride ranged from 1000 to 3000 mg kg". Medium levels of
fluoride in bone could not be used to predict the severity of dental fluorosis. At bone
fluoride levels greater than 3000 mg kg”, approximately 78% of the rats had a high
severity score. Therefore, high levels of bone fluoride can accurately predict the
severity of dental fluorosis.

Myelotoxicity

The hematopoietic system is uniquely sensitive to a wide variety of toxic agents
and environmental pollutants. Evidence has accumulated that exposure to certain
environmental chemicals can produce myelotoxicity in laboratory animals at low dose
levels where other manifestations of toxicity are not observed in the parenchymal
organs. Evidence suggests that suppression of granulocyte-macrophage progenitors
is demonstrated at lower-level exposures to contaminants. Bone marrow, with rapidly
renewing cell population, is one of the most sensitive endpoints for detecting health
effects of environmental contaminants because alterations in bone marrow progenitors
occur at exposure levels where only minimal or no parenchymal organ toxicity is seen.
Examination of colony formation of the hematopoietic cells following exposure to
chemicals has proven to be a very sensitive indicator of myelotoxicity, often being
suppressed prior to detecting hematological changes, as well as a means for
mechanistic study of the toxicity of various drugs. In order to form large colonies of
differentiating macrophages and/or granulocytes, colony stimulating factor (CSF) is
necessary for the in vitro proliferation of bone marrow progenitor cells of macrophages
and/or granulocytes. It has been reported that the injection of mice with the bacterial
lipopolysaccharide (LPS) elicits acute rises in serum CSF levels.

Since we did not observe any parenchymal organ toxicity from the
histopathology examinations of cotton rats, we examined altered patterns of progenitor
cell proliferation and differentiation in bone marrow hematopoiesis by in vitro colony
growth assays. We verified a significant decrease in CFU-GM in cotton rats exposed
to cyclophosphamide under controlled laboratory conditions before using the technique
to assess animals from the field populations. CFU-GM colony formation was
suppressed in rats from petrochemical waste sites (overall means ranged from 61.14%
to 74.94%) compared to cotton rats from reference sites (100%), and the inhibition of
colony formation was statistically significant from reference values during all collections
except one winter. Whether the observed changes were sufficient in magnitude to
affect disease resistance following exposure to the toxic insults was not determined.

Monoxygenase Acitivity

Liver samples were processed within 2 min. of sacrifice for use in detoxication
enzyme assays. Evaluation of hepatic cytochrome P-450 induction in wild hispid cotton
rats has been suggested as a useful endpoint for biological monitoring of various
environmental contaminants (Elangbam et al. 1989). Hepatic microsomes contain
multiple cytochrome P-450 isoenzymes that posses broad substrate selectivity. The
different isoenzymes function in the activation and detoxification of various xenobiotics.
O-dealkylation of resorufin ethers (inductionm of the CYP1A subfamily [classic inducers
are 3-methylcholanthrene, B-naphthoflavone] has been shown to be particularly useful
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in assessing xenobiotic exposure in wild rodents (Lubet et al. 1985). We examined the
response and sensitivity of hepatic cytochrome P-450 isoenzyme activities of the cotton
rat inhabiting petrochemical —contaminated environments containing complex mixtures
of organic hydrocarbons and heavy metals. We hypothesized that feral cotton rats
would be sensitive to contaminant exposure as reflected by elevated hepatic
microsomal cytochrome P-450 activity and associated O-dealkylation activities for
ethoxyresorufin and methoxyresorufin.

Analyses of these data from cotton rats inhabiting three reference sites and
three contaminated sites at an abandoned oil refinery Superfund waste site in
Oklahoma revealed several important differences. O-dealkylation of ethoxyresorufin
and methoxyresorufin was significantly greater (170 — 180%) in cotton rats from
contaminated sites compared to those from reference sites in summer, but not winter.
These results indicate that the cotton rat may be a sensitive model species for
biomonitoring petrochemical-contaminated ecosystems and demonstrate the
importance of multi-season sampling in biomonitring studies.

Immunotoxicity

The immune system was assessed completely for any evidence of immunotoxicity
by assessing macrophage function, immune organ development and cellularity, serum
antibody levels, innate immunity, in vivo cell-mediated immunity, lymphoproliferative
responsiveness of cultured lymphocytes, and natural killer cell function (Tables 11ab,
12ab, 13ab, and 14ab).

Cotton rats collected from contaminated landfarm sites generally showed an
enhanced lymphoproliferative response following stimulation with the plant-lectin Con-
A. This assay is useful for assessing the ability of mature and immature T-cells to
undergo blastogenesis following antigenic stimulation. Benzo (a) pyrene at low
concentrations (10°M — 10°*M) is capable of enhancing the proliferative response of
mouse splenocytes following in vitro stimulation with Con-A and PHA (Tomar 1991).
Constan et al. (1995) noted a significant increase in hepatocyte proliferation in vivo for
F344 rats following long-term exposures to low levels of a complex petrochemical
mixture containing arsenic, benzene, chloroform, chromium, lead, phenol, and
trichloroethylene.

The macrophage arm of the nonspecific immune system has been consistently
shown to be responsive to many forms of immunotoxicants under laboratory exposure
conditions (Descotes 1988). We observed both quantitative and qualitative differences
in indices of nonspecific immunity in the cotton rat. Total cell yields from the peritoneal
cavity, including numbers of recovered macrophages, was frequently elevated in
animals from contaminated landfarm sites. Measurements of integrity of the respiratory
burst via mitochondrial reduction of NBT showed a trend comparable to that for total
cell yield in cotton rats, suggesting exposure caused some up-regulation of
macrophage activity. Exposure to metals such as chromium, copper, and manganese
can be associated with similar numerical responses in macrophages of laboratory
rodent models. Wojdani and Alfred (1984) observed that several PAHs were capable
of inducing substantial elevations in macrophage yields in a dose-dependent fashion.
Elevated phagocytic activity and H,0. production by mouse macrophages have been
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observed following exposures to low concentrations of lead and cadmium (Cd, 3.0 mg
kg™ food; Pb 1.5 mg kg food; Baykov et al. 1996).

Cotton rats collected from contaminated landfarm sites experienced a marginal
depression in their hypersensitivity responsiveness to an intradermal challenge of PHA,
suggesting that some functional suppression of cell-mediated immunity may have
resulted from exposure to the complex mixtures of contaminants on these sites.
McMurry (1993) and Propst et al. (1995) showed a similar depression for in vivo
response to antigenic challenge with PHA for cotton rats collected from petrochemical-
contaminated sites. This type of hypersensitivity reaction is mediated by macrophages
and involves T-cells that produce lymphokines in response to the PHA. Laboratory
studies have documented dysregulation of skin immune function through loss of
Langerhan cells when mice were exposed to 7,12 dimethylbenz[a]anthracene (Halliday
1988). However, the elevated yields and metabolic activity of macrophages that we
observed in cotton rats from contaminated sites would seem to suggest that the
reduced response to PHA challenge may be more T-cell dependent. :

The results of this study indicate that the petrochemical wastes that were applied
to soils have no uniform immunomodulatory effect on cotton; immune alterations were
sometimes indicative of enhancement while on other sites these same assays were
indicative of suppression of the immune response. These observations are not
unexpected given the considerable diversity of contaminants present in the soils of the
five differrent land treatment facilities we investigated. Many contaminants such as
metals are well known for their differing abilities to either enhance or suppress immune
responses. Waste products disposed of through land application technologies such as
these vary from one industrial site to another. For example, land treatment unit 3 was
used almost exclusively for the disposal of tank-bottom wastes, while land treatment 1
was used for the disposal of waste sludges from sedimentation ponds as well as tank-
bottom wastes. An additional factor contributing to the observed differences in
response variables is the length of time wastes were actually applied to the soails. Most
of these sites lacked historical records on what was applied and how long the
landfarms were in operation. Of the assays we employed in this study, assessing cell-
mediated immunity in a lymphoproliferation assay, enumerating platelets, and
assessing macrophage function appeared to be the most sensitive indicators of
exposure for cotton rats from land treatment sites.

Genotoxicity Assessments:

Bone marrow metaphase chromosomal spreads were prepared and scored for
the presence of six classes of chromosomal damage. For the Fall 1995 trapping
period, mean number of lesions per cell ranged from 0.03 (Cleveland Refinery Toxic
Site, and Reference Site 1) to 0.16 (Cyril Refinery Toxic Site). Chromatid breaks were
the most frequently observed class of aberration and ranged from a mean of 1.27 (Cyril
Reference Site 1) to 3.17 (Cyril Refinery Toxic site 2). During the Spring 1996 trapping
period, mean number of lesions per cell were consistently much lower at all sites and.
ranged from 0.004 at Cleveland Refinery Toxic Site to 0.023 at Cyril Refinery Toxic Site
2. Levels of damage observed in all classes of aberrations were also consistently
lower during the Spring 1996 trapping period with chromatid breaks again being the
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most frequently observed class of damage followed by acentric fragments. The two
highest values for mean number of chromatid breaks were from the two Cyril Refinery
Toxic Sites. Although only preliminary, these data suggest that the Superfund Site at
Cyril, OK, which was initially considered to be the most heavily contaminated of our
sites, consistently showed the most severe response at the chromosomal level.

Spleen tissue was also analyzed using Flow Cytometry for non-cell lethal
genetic lesions, which can be transmitted to daughter cells gradually leading to
increased dispersion of nuclear DNA content among progeny cells. Statistical analyses
for the Fall 1995 collecting period indicated that the highest CV's occurred at Cyril
Refinery Toxic Site 1, and the lowest CV occurred at Cyril Reference Site 2, again
suggesting that animals from the Cyril Superfund site are suffering the most serious
genetic impact as measured by flow cytometry. A proliferation index (P1) was
calculated for each animal from toxic sites by adding the percent cells in S and G2/M
stages of the cell cycle then dividing this number by the same value calculated for all
matched reference site animals (values close to 1 indicates a normal proliferating cell
population). For the Fall 1995 trapping period, animals from Cyril Refinery Toxic Sites
1 and 2 had Pls of 1.54 and 0.76, suggesting deviation from normal DNA synthesis
rates. Values for the Spring 1996 trapping period showed a similar trend, again
suggesting that the Cyril Superfund Site was the most severely impacted site based on
genetic endpoints.

Overview of Findings

Soils of petrochemical sites were contaminated with Cd, Cr, Cu, Ni, Pb, Sr, Ti, V,
and Zn. Metal contamination was randomly distributed among landfarms, pond burms, and
tar pits. Fluoride in soil was elevated (10- to 60-fold greater) on the petrochemical sites as
compared to the reference sites and was more prevalent on landfarms. Fluoride and Pb
were also elevated in bone tissue of cotton rats collected from the petrochemical sites as
compared to the reference site. Lead levels in bone of 21.5 mg kg were higher in cotton
rats collected from the petrochemical sites in winter as compared to Pb of 10.0 mg kg™ in
bone of animals collected during the summer. Most cotton rats (80%) collected from seven
petrochemical sites with elevated levels of soil and bone fluoride had dental fluorosis. The
prevalence of dental fluorosis was 50% higher in winter than in summer animals. There
was a strong relationship (r = 0.85) between bone fluoride and total content of fluoride in
soil.

The results of this study indicate that the petrochemical wastes that were applied
to soils have no uniform effect on small mammals across all study areas. For example,
immunomodulatory effects on cotton rats were sometimes indicative of enhancement
while on other sites these same assays were indicative of suppression of the immune
response. These observations are not unexpected given the considerable diversity of
contaminants present in the soils of the five differrent land treatment facilities we
investigated. Many contaminants such as metals are well known for their differing
abilities to either enhance or suppress immune responses. Waste products disposed
of through land application or other disposal technologies vary from one industrial site
to another. For example, land treatment unit 3 was used almost exclusively for the
disposal of tank-bottom wastes, while land treatment 1 was used for the disposal of
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waste sludges from sedimentation ponds as well as tank-bottom wastes. An additional
factor contributing to the observed differences in response variables is the length of
time wastes were actually applied to the soils. Most of these sites lacked historical
records on what was applied and how long. Of the assays we employed in this study,
assessing cell-mediated immunity in a lymphoproliferation assay, enumerating
platelets, assessing macrophage function, and myelotoxicity appeared to be the most
sensitive indicators of exposure to immunotoxicants for cotton rats from land treatment
sites. Genotoxic and pathologic indicators were not sensitive to exposure levels at
these petrochemical waste sites. Tissue contaminant burdens in cotton rats were
useful measures of actual metal exposure and hepatic isoenzyme activities for
detoxification enzymes proved useful assessing actual exposure to organic
contaminants.

To prevent accumulation of contaminants in cotton rats, land application of
petrochemical wastes should be based on inorganic contaminants. Wastes that contain
excessive levels of inorganic contaminants may not be suitable for land application.
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Table 1. Description of petrochemical contaminated soils.

Site Type Soil pH Soil OC? Soil Texture  Soil EC®
A landfarm 7.5 3.2 foam 0.24
B landfarm 6.6 4.7 loam 0.21
C landfarm 6.5 4.7 loam 0.19
D landfarm 7.0 6.5 sandy loam  0.27
E landfarm 6.9 14.5 sandy loam  0.32
F pond burm 7.1 7.9 loam 0.20
G pond burm 6.8 3.9 loam 0.16
H pond burm 5.1 33.8 loamy sand  0.18
| tar pit 6.0 3.3 silt loam 0.13
J tar pit 7.0 3.4 loam 0.23
K tar pit 6.6 34 clay loam 0.21
L tar pit 6.5 304 sandy loam 0.18

®organic carbon content in %
®electrical conductivity (dS m™)



Table 2. Comparison of range and mean metal content of study site
with baseline soils.

Metal Petroleum Reference Baseline soils
sites® sites

Ba 83-312 16.0-883 100-3000°
(211) (196) (580)

Cd 0.10-5.12 0.00-0.60 0.00-0.61°
(0.96) (0.25) (0.22)

Co 3.78-12.30 3.6-17.5 6.3-30.3°
(8.82) (7.94) (14.0)

Cr 7.70-1863 3.9-52.6 5.0-1500°
(267) (18.3) (54.0)

Cu 16.8-1210 5.3-74.0 2.7-23.9°
(152) (14.2) (10.5)

Ni 12.4-50.6 5.8-28.6 6.1-41.7°
(29.2) (15.5) (21.0)

Pb 20.9-1679 4.1-29.8 5.1-27.2°
(410) (12.0) (16.5)

Sr 16.7-390 9.2-47.6 10.0-500°
(86.3) (18.2) (67.0)

Ti . 9.23-223 5.4-228 684-4081°
(73.0) (51.3) (2765)

V 11.8-95.7 . 4.9-50.7 3.8-81.0°
(42.8) (21.2) (31.7)

Zn 58.3-894 12.9-51.6 22.3-127.3°
(208) ' (34.9) (31.7)

Hcl F 2.0-1026 06-26.5 = cmmemmmeeeeeee-
(247) (4.03)

Fusion F 60.2-5257 10.9-217 10.0-400°
(1748) (89.7) (360)

2Range and mean (in parenthesis) metal content of soils
® Adriano 1986

“Basta et al. 1998

?Kabata-Pendias and Pendias 1984



Table 3. Total mean concentrations of metals and fluoride in soils from petrochemical sites.
All values are in mg kg™ on a soil basis. Bolded values are greater (p< 0.05) than the mean
of all reference sites. Values with the same letter are not significantly different.

Site Ba Cd Co Cr Cu Ni Pb

a 206 bed 0.48 bed 6.82 de 233 b 36.5cde  50.6 ab 61.1 ef
b 193 bed 0.32 bed 17.8 a 52.8 de 18.5 fg 31.1 abed 209h

c 160 bedef  0.38 bed 11.2 be 105 ¢ 24.8 defg  19.6 bcdef  29.1 fgh
d 273 abe 0.33 bed 9.80 bcd 292 b 102 b 27.7 abed 1240 a
e 312 ab 238a 7.30 de 1863 a 1210 a 38.7a 1679 a
f 169 cdef 0.48 bed 3.78 g 423 b 195b 124 f 769 b

g 191 bede 0.73 b 9.78 bed 7.71 16.8 fg 14.9 def 343 be
h 161 cdef 023 cd 7.43 de 95.9 cd 54.4 cd 35.8 ab 243 bed
I 212 bedef  0.32 bed 4.68 fg 13.1 hi 51.0 cd 19.8 cdef 24.2 gh
j 829 f 0.70 be 8.49 cde 26.3 fg 68.9 be 26.3 abcde 170 de
k 483 a 512 a 12.3b 375 ef 18.1 efg 32.0 abe 147 efg
1 87.4 ef 0.10d 6.45 ef 54.0 de 30.3 cdef 42.0ab 198 cde
Reference 196 def 0.25 bed 7.94 de 18.3 gh 142 ¢ 155 ef 120h




Table 4. Total mean concentrations of metals and fluoride in soils from petrochemical sites.
All values are in mg kg™ on a soil basis. Bolded values are greater (p< 0.05) than
the mean of all reference sites. Values with the same letter are not significantly different.

Site Sr Ti \Y Zn HCIF Fusion F
A 192 b 164 ab 924 a 173 be 732 a 2672 be
B 192 f 192 f 23.0c¢ 90.9 de 338b 878 d

C 23.5def  23.5ef 23.1c 259 b 1026 a 4316 ab
D 748 ¢ 124 abc 70.2 ab 215b 344 b 5257 a
E 390 a 223a 40.8b 894 a 22.24d 2082 bc
F 158 ¢ 31.0 ef 14.0 de 83.8 de 20.5 de 64.7 g
G 25.1 def 25.1 ef 8.1¢ 249 b 6.23 fg 103 efg
H 503d 104 be 93.9a 96.3 de 124 ¢ 3213 be
I -37.6 de 50.8 de 11.8 de 87.8 de 2.04h 60.2 fg
J 16.7 £ 923 g 17.1cd 140 cd 16.1 ef 169 ¢

K 26.8 def 26.8 ef 229¢ 153 de 4.37 gh 150 ef
L 213 ef 74.9 cd 95.7a 583 e 332b 2016 cd

Reference 182 f 513 ef 212 cd 349 ¢ 4.03 gh 89.7 efg




Table 5. Mean concentration of bone in cotton rats collected from petrochemical sites.
All values are in mg kg™ of bone. Bolded values are greater (p<0.05) than the control.
Values with the same letter are not significantly different

Site Ba Cr Pb Sr Ti Zn F

A 29.5 ef 29b 46¢ 239 ab 0.5a 179b 1515 be
B 45.6 cd l4cd 1l4def 134e 0.3ab 184ab 1610 be
C 40.2 de 0.5d 0.7 f 133 e 02b 177 2964 a
D 65.5 bc 29ab 634a 145 de 0.3 ab 185 ab 830d

E 61.9 be 32a 12.8b 174 cd 0.3ab  167bc 1733 ¢
F 31.1 ef 04d 12.4b 212 be 0.5ab 170bc 89.5f
G 472 cd 0.8cd 60.7a 132¢ 04ab 180D 171 e

H 79.4b 2.7 ab ‘2.2 def 134 03ab 172bc 2671 b
I -81.5b 0.7d 35¢cd 257 a 05ab 150c¢ 137 ¢

J 213 f 37ab 38c¢ 83.5f 0.4ab 163 bc 172.6¢
K 126 a 1.3cd 3.0cde 163 cde 02b 211a 1375¢
L 78.4b 29ab 20.1Db 134 ¢ 03ab 197b 3683a

Reference 105b 1.6¢ 1.5ef 148 ¢ 0.4ab 173 be 159¢




Table 6. Simple correlation between bone and soil contents.

Ba Cr Pb Sr Ti Zn HCIF Total F

-0.00 0.30 0.36 0.40 0.05 -0.07 0.70 0.85

r
0.89 0.84 0.02 0.00

p-value 1.00 0.34 0.25 0.21




Table 7. Detection limits for organic contaminants by GC-MS. Results are expressed as ug kg™ soil.

Organic Contaminant Detection ~ Organic Contaminant Detection Limit
Limit
Acenaphthene 10 2,4-Dinitrotoluene 100
Acenaphthylene 10 2,6-Dinitrotoluene 100
Acetophenone 100 Diphenylamine 100
4-Aminobiphenyl! 100 Diphenylhydrazine 100
Aniline 100 Di-n-octyl phthalate 100
Anthracene 10 Fluoranthene 10
Benzidine 100 Fluorene 10
Benzoic Acid 100 Hexachigrobenzene 100
Benzo (a) anthracene 10 Hexachlorcbutadiene 100
Benzo (b and k) fluoranthene 10 Hexachlorocyclopentadiene 100
Benzo (g,h,i,) perylene 10 Hexachloroethane 100
Benzo (a) pyrene 10 Indeno (1,2,3) pyrene 10
Benzyl alcohol 100 Isophorone 100
bis (2-Chloro ethoxy) 100 3-methylcholanthrene 100
methane
bis (2-Chloroethyl) ether 100 2-Methylnapthylene 100
bis (2-Chloroisopropyl) ether 100 2-Methylphenol 100
bis (2-ethylhexyl) phthalate 100 3 or 4-Methylphenol 100
4-Bromophenyl-phenylether 100 Napthalene 10
Butylbenzyiphthalate 100 1-Napthylamine 100
4-Chloroaniline 100 2-Napthylamine 100
4-Chioro-3-methylphenol 100 2-Nitroaniline 100
1-Chloronapthalene 100 3-Nitroaniline 100
2-Chloronapthalene 100 4-Nitroaniline 100
2-Chlorophenol 100 Nitrobenzene 100
4-Chlorophenyl-phenylether 100 2-Nitrophenol 100
Chrysene 10 4-Nitrophenol 100
Dibenzo (a,j) acridine 100 N-Nitrosodi-n-butylamine 100
Dibenz (a,h) anthracene - 10 N-Nitrosodimethylamine 100
Dibenzofuran 100 N-Nitroso-di-n-propylamine 100
Di-n-buty| phthalate 100 N-Nitrosodiphenylamine 100
1,2-Dichlorobenzene 100 N-Nitrosopiperidine 100
1,3-Dichiorobenzene 100 Pentachlorobenzene 100
1,4-Dichlorobenzene 100 Pentachlornitrobenzene 100
3,3 Dichlorobenzidine 100 Pentachlorophenol 100
2,4-Dichiorophenol 100 Phenacetin 100
2,6-Dichlorophenol 100 Phenanthrene 10
Diethyl phthalate 100 Phenol 100
p-Dimethylaminoazobenzene 100 2-Picoloine 100
7,12- 100 Pronamide 100
Dimethylbenz(a)anthracene
a,a-Dimethylphenethylamine 100 Pyrene 10
2,4-Dimethylphenol 100 1,2,4,5-Tetrachiorobenzene 100
Dimethyiphthalate 100 2,3,4,6-Tetrachlorophenol 100
4,6-Dinitro-2-methylphenol 100 1,2,4-Trichlorobenzene 100
2,4-Dinitrophenol 100 2,4,5-Trichlorophenol 100
2,4 6-Trichlorophenol 100




Table 8. Total petroleum hydrocarbon, semivolatile priority pollutants including polyaromatic
hydrocarbons in soils from petrochemical contaminated sites. Values are means of six samples,

values in parentheses are means from reference sites. Study sites for 1995-6.

Organic Chemical Cyril Landfarm  Cyril Pondberms ~Cushing Cleveland
Contaminant Site A Site F Site J Site I

mg kg’
Total Petroleum Hydrocarbons 275 (30.3) 645 (71.7) 295 (27.0) 65.9 (31.3)

ug kg’
Napthalene 0 (0) 19.1 (0) 9.0 (0) 0(0)
Acenaphthylene 0 (0) 0 (0) 0 (0) 0 (0)
Acenapthene 0(0) 0 (0) 12.3 (0) 0 (0)
Fluorene 0 (0) 0 (0) 13.0 (0) 0 (0)
Phenanthrene 12.8 (0) 135 (8.8) 140 (0) 149 (3.6)
Anthracene 9.9 (0) 333 (0) 38.2 (0) 24.8 (0)
Fluoranthene 0(9.7) 25.3 (0) 123 (0) 63.5 (0)
Pyrene 7.5 (0) 171 (0) 133 (0) 128 (18.8)
Benzo (a) anthracene 4.5 (0) 68.5 (0) 111 (0) 133 (15.8)
Chrysene 11.3 (0) 132 (9.8) 441 (0) 209 (19.1)
Benzo (b and k) fluoranthene 0 (7.1) 63.8 (10.8) 188 (5.5) 202 (34.9)
Benzo (a) pyrene 8.3 (0) 57.9 (0) 114 (6.8) 106 (37.8)
Indeno (1,2,3-cd) pyrene 0 (0) 17.4 (0) 45.8 (0) 24.2 (0)
Dibenz (a,h) anthracene 15.0 (0) 54.2 (0) 13.6 (0) 0 (0)
Benzo (g,h,i) perylene 46.8 (0) 163 (0) 108 (0) 55.6 (0)
Bis (2-ethylhexyl) phthalate 41.6 (0) 65.7 (82.0) 0(0) 0(0)
Di-n-butylphthalate 89.5 (0) 130 (116) 56.7 (0) 38.4 (0)
Diethylphthalate 85.7 (0) 52.3 (0) 24.2 (0) 0 (0)
2,6-dinitrotoluene 0 (0) 170 (0) 0 (0) 0 (0)
Butylbenzylphthalate 42.5 (0) 17.3 (0) 0.0 (0) 0 (0)
2-methylnapthylene 0 (0) 41.7 (0) 0 (0) 0(0)




Table 9. Total petroleum hydrocarbon, semivolatile priority pollutants including polyaromomatic
hydrocarbons in soils from petrochemical contaminated sites. Values are means of six samples,
values in parentheses are means from reference sites. Study sites for 1996-7.

Contaminant Double Eagle Tinker Mounds Tulsa Cap
Site G Site K Site C Site B
mg kg’
Total Petroleum Hydrocarbons 89.3 (2.0) 17.9 (2.0) 609.9 (6.1) 769.7 (0)
ug kg
Napthalene 0.0 (0) 17.9 (0) 290 (0) 92.0 (0)
Acenaphthylene 2.6 (0) 17.9 (0) 54.0 (0) 0.0 (0)
Acenapthene 0.0 (0) 18.5 (0) 19.9 (0) 0.0 (0)
Fluorene 0.0 (0) 19.1 (0) 28.3 (0) 3.5(0)
Phenanthrene 22.0 (0) 19.8 (0) 217 (0) 131 (0)
Anthracene 2.5(0) 20.5 (0) 79.1 (0) 25.2 (0)
Fluoranthene 67.1 (9.7) 21.2 (0) 8.3 (0) 4.4 (0)
Pyrene 34.4 (0) 22.0 (0) 35.4 (0) 41.6 (0)
Benzo (a) anthracene 15.3 (0) 21.8 (0) 19.3 (0) 31.6 (0)
Chrysene 29.5 (0) 21.8 (0) 44 .2 (0) 60.8 (0)
Benzo (b and k) fluoranthene  38.4 (7.3) 22.2 (0) 32.4 (0) 48.3 (0)
Benzo (a) pyrene 4.9 (0) 22.3 (0) 39.0 (0) 47.8 (0)
Indeno (1,2,3-cd) pyrene 19.9 (0) 21.3 (0) 63.2 (0) 29.7 (0)
Dibenz (a,h) anthracene 0.0 (0) 21.5(0) 0.0 (0) 51.9 (26.7)
Benzo (g,h,i) perylene . 28.7(0) 21.8 (0) 419 (0) 281 (0)
Bis (2-ethylhexyl) phthalate 0 (0) 23.0 (0) 90.0 (0) 105 (0)
Di-n-butylphthalate 345 (127) 23.3 (0) 568 (276) 871 (35.3)
Diethylphthalate 0 (0) 9.1 (0) 125.3 (0) 0.0 (0)
Butylbenzylphthalate 0 (0) 0.3 (0) 0.0 (0) 0.0 (0)
2-methylnapthylene 0 (0) 0.3 (0) 1119 (0) 504 (0)




Table 10. Total petroleum hydrocarbon, semivolatile priority pollutants including polyaromomatic
hydrocarbons in soils from petrochemical contaminated sites. Values are means of six samples.
Values in parentheses are means from reference sites. Study sites for 1996-7.

Contaminant Duncan Landfarm Conoco Duncan Pond Duncan Tar
Site D Site E Burm, Site H Pit, Site L
mg kg’
Total Petroleum Hydrocarbons 3240 (38.4) 5670 (9.2) l2530 (28.0) 774 (0)
ug kg’
Napthalene 758 755 1150 1017
Acenaphthylene 0(0) 0 (0) 0 (0) 0 (0)
Acenapthene 0(0) 0 (0) 0 (0) 0 (0)
Fluorene 0(0) 37 (0) 0 (0) 0 (0)
Phenanthrene 0 (0) 2320 (0) 2063 (0) 2113 (0)
Anthracene 0(0) 0(0) 713 (0) 833 (0)
Fluoranthene 0 (0) 432 (0) 1525 (0) 500 (0)
Pyrene 0 (0) 1550 (0) 1833 (0) 2100 (0)
Benzo (a) anthracene 750 1920 (0) 1820 (0) 3388 (0)
Chrysene 0(0) 2127 (0) 3330 (0) 3988 (0)
Benzo (b and k) fluoranthene 0 (0) 1380 (0) 2300 (0) 2638 (0)
Benzo (a) pyrene 0 (0) 0 (0) 3163 (0) 5175 (0)
Indeno (1,2,3-cd) pyrene 0 (0) 0(0) 0 (0) 0 (0)
Dibenz (a,h) anthracene 0 (0) 0 (0) 0 (0) 0 (0)
Benzo (g,h,i) perylene 0 (0) 0(0) 0 (0) 0 (0)
Bis (2-ethylhexyl) phthalate .= 0 (0) 0 (0) 0 (0) 0(0)
Di-n-butylphthalate 0(0) 0 (0) 0 (0) 0 (0)
Diethylphthalate 0(0) 0 (0) 0 (0) 0(0)
Butylbenzylphthalate - 0(0) 0 (0) 0 (0) 0 (0)

2-methyinapthylene 0 (0) 0 (0) 0(0) 0(0)
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